
The Villages Amateur Radio Club

Bits, bytes, words, and pages:
How computers really operate

Greg Astfalk
May 16, 2019

The Villages Amateur Radio Club (of 64)May 16, 2019

Abstract

• We explain how information is represented within
computers. This includes the computer’s instructions. With
this we can describe how computers, including your smart
phones, actually operate. We offer some impressive
numbers regarding the attributes of our processors and
computers. Our expectation is that the audience will have a
new and better understanding, and appreciation, of
computing devices.

 2

The Villages Amateur Radio Club (of 64)May 16, 2019

Prologue

• Our goal is to convey a deeper understanding and
appreciation of how computers actually function

• We don’t need to be computer architects, electrical
engineers, or scientists to understand the concepts

• What we discuss applies equally to smart phones, tablets,
laptops, PCs, automobiles, smart refrigerators, servers, etc.
- Independent of Android, IOS, macOS, Windows, or Linux

 3

The Villages Amateur Radio Club (of 64)May 16, 2019

Caveats

• Some aspects of this talk are very complex in practice
- We can’t cover such complexity in detail in this talk

- A disclaimer is in the slide’s upper-right corner in most such places

- If you want to know more details, ask 1on1 after the lecture

• This is not a Wikipedia-based talk
- If you want to know my credentials to cover this topic, ask 1on1 after

the lecture

• A few “bonus” photos at the end of the slide deck (enjoy)
 4

The Villages Amateur Radio Club (of 64)May 16, 2019

Big numbers

• We’ll encounter some of these and we don’t want them
taken for granted

 5

Kilo 210 1,024 Thousand 103 1,000

Mega 220 1,048,576 Million 106 1,000,000

Giga 230 1,073,741,824 Billion 109 1,000,000,000

Tera 240 1,099,511,627,776 Trillion 1012 1,000,000,000,000

Peta 250 1,125,899,906,842,624 Quadrillion 1015 1,000,000,000,000,000

Exa 260 1,152,921,504,606,846,976 Quintillion 1018 1,000,000,000,000,000,000

NB: “Gazillion” is not a formally defined number; sorry…

The Villages Amateur Radio Club (of 64)May 16, 2019

Computer architecture

• Some familiarity with
components of a
computer’s hardware
will help in this lecture

• This very simplified
cartoon’s elements
will suffice
- Explanations follow

 6

Storage

Processor

Core(s)
and

logic

Caches

Registers

Not drawn to
any scale

Memory
Memory
channel

i/o
channel

Computer

i/o

The Villages Amateur Radio Club (of 64)May 16, 2019

Architecture cartoon explained (1 of 2)

• Processor core(s) and logic
- The core execute the instructions, “logic” is the other working areas

- Almost exclusively binary logic

• Processor registers
- A small number (~32) of fast, ephemeral holding places for data

• Caches
- Ephemeral storage between registers and memory to improve

performance (two types, explained later)

 7

The Villages Amateur Radio Club (of 64)May 16, 2019

Architecture cartoon explained (2 of 2)

• Memory
- Ephemeral repository for a executing program’s information

- Contents are “addressed” by a linear numbering (more later)

• Storage
- Persistent and permanent repository for data and programs

• “Wires”
- Not actually, but conductors connecting one physical location to

another physical location

 8

The Villages Amateur Radio Club (of 64)May 16, 2019

Bit

• A basic and, fundamentally important, aspect of all
computing devices is the “bit”

• bit = Binary digIT

• Binary means two
- Hence a bit can only have one of two possible values

 9

The Villages Amateur Radio Club (of 64)May 16, 2019

Bit values

• What values can a bit have?

• We use the terminology of 0 or 1

• We also (sometimes) say a bit is “on” or “off”

• 0 or 1 is the best choice of terminology
- This has reasons rooted in arithmetic, as we will see

 10

The Villages Amateur Radio Club (of 64)May 16, 2019

Important aside: Digital logic

• Electronic circuitry which operates on discrete values
- It is safe to assume, for computers, the discrete values are binary

- Example: today’s microprocessors

• Contrast to “analog logic”
- Operates on continuous, time-varying signals

- Example: audio ADCs and DACs and “radios”

 11

The Villages Amateur Radio Club (of 64)May 16, 2019

Bits in real-life

• How is a bit actually represented within a computer?

• Electronically
- Details on next slide

• We often speak of “moving” bits
- We don’t physically move a “thing”

- We do move the “state” or signals representing bits

 12

The Villages Amateur Radio Club (of 64)May 16, 2019

Bits in electronic form

• A bit:
- in the logic is generally a transistor or gate that is “on” or “off”

- in a register is (generally) the “state” in a flip-flop latch

- in a cache is dual-inverter state in a 6T (i.e., 6 transistor) SRAM cell

- in memory is the presence or absence of capacitive charge

- in storage is
‣ trapped charge in a special type of transistor (phones and tablets)
‣ a small magnetized area on a disk (servers and some laptops)

- on a “wire” is either a positive, negative or zero voltage

 13

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

The Villages Amateur Radio Club (of 64)May 16, 2019

Byte

• A byte is nothing more than 8 bits treated together
- A processor can treat a subset of a byte but never breaks it apart

• A byte is the smallest entity that a processor can “address”

• This is no more complicated than it seems

 14

bit #7 bit #6 bit #5 bit #4 bit #3 bit #2 bit #1 bit #0⎬｜ ⎫｜⎭

Byte

The Villages Amateur Radio Club (of 64)May 16, 2019

Bytes and memory

• The memory of a computer is a very
large set of bytes

• The bytes of memory are numbered
sequentially

• Addressing memory is, of necessity,
complex with several types of addresses
- Virtual addresses

- Physical addresses

 15

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

⋱

Byte #N ⟶
Byte #N+1 ⟶
Byte #N+2 ⟶

The Villages Amateur Radio Club (of 64)May 16, 2019

Word

• A “word” is either 4 or 8 bytes in size
- The notation 32-bit word or 64-bit word is also commonly used

• The bytes of a word are always stored contiguously in the
registers, caches, memory, and storage

 16
⎬ ⎫⎭

4-byte word

byte #0byte #1byte #2byte #3

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

The Villages Amateur Radio Club (of 64)May 16, 2019

Page

• Our final structural construct is the “page”

• A page is
- Merely a set of contiguous bytes

- Generally, but not restricted to, 4,096 bytes in size

- In some cases pages are huge (i.e., Gbytes in size)
‣ Done for efficiency purposes

• Reminder: bits ⇒ bytes ⇒ words ⇒ pages

 17

The Villages Amateur Radio Club (of 64)May 16, 2019

Moving on…

• We have defined the structural aspects of computer data
“containers”, i.e., bits, bytes, words, and pages

• We now shift to the topic of number representation
- This is a slight but important step sideways to cover number “bases”

 18

The Villages Amateur Radio Club (of 64)May 16, 2019

Base-10 numbers (1 of 2)

• This may sound new and complex
- It isn’t!

• We really know base-10 numbers and arithmetic very well

• We use it all the time without even being aware

• Consider the number 6,728,441
- This says that we have 6 millions, 7 hundred thousands, 2 ten

thousands, etc.

 19

The Villages Amateur Radio Club (of 64)May 16, 2019

Base-10 numbers (2 of 2)

• The first, rightmost, digit represents the number of 1s

• The second digit represents the number of 10s

• By induction the nth digit represents 10(n-1)

- First digit: 100 = 1

- Second digit: 101 = 10

- Third digit: 102 = 100

- etc.

 20

The Villages Amateur Radio Club (of 64)May 16, 2019

Base-2 numbers (1 of 3)

• Base-2 numbers merely use 2, rather than 10, as the base

• We humans don’t need to directly use base-2 numbers
- We cover it for understanding how computing devices operate

• Important point
- Since the base is 2 (i.e., binary) it is a natural match to bits

 21

The Villages Amateur Radio Club (of 64)May 16, 2019

Base-2 numbers (2 of 3)

• In a base-2 number:
- The rightmost digit is the number of 1s (20)

- The second digit is the number of 2s (21)

- The third digit is the number of 4s (22)

- The fourth digit is the number of 8s (23)

- etc.

• Other than the base this is no different from our comfortable
understanding of base-10 numbers

 22

The Villages Amateur Radio Club (of 64)May 16, 2019

Base-2 numbers (3 of 3)

• For exposition let’s reconsider our earlier, and arbitrary,
base-10 number, 6728441

• In base-2 this same number is
- 11001101010101011111001

• Right, this looks worse, not better
- Worse for us

- (Much) better for computers

 23

The Villages Amateur Radio Club (of 64)May 16, 2019

Base-2 arithmetic, finale

• Whether we use base-10 or base-2 the number represents
the same number of marbles, people, cats, etc.

• What we learned in grade school about borrowing, carrying,
multiplying, etc. still applies in base-2 arithmetic
- The logic in a processor is significantly simpler, more compact, and

much faster if we use base-2 arithmetic
‣ There is synergy among bits, base-2 arithmetic, and digital logic

 24

The Villages Amateur Radio Club (of 64)May 16, 2019

Moving on…

• We are now conversant with the data “containers” and
base-2 representation of numbers

• We now shift to the topic of what types of data are held in
these containers and how they are represented

• Reminder: we want all our data to be binary since it is
synergistic with digital logic

 25

The Villages Amateur Radio Club (of 64)May 16, 2019

Data types

• Almost all the types of data which a computer deals with are
- Characters

- Integer numbers

- Floating-point numbers

- Application-specific sets of bits
‣ For example, the bits used to represent our photos and videos
‣ We will not discuss this further in this lecture

- Bits internal to the processor for its operation
‣ We will not discuss this further in this lecture

 26

The Villages Amateur Radio Club (of 64)May 16, 2019

Character data (1 of 3)

• Computers are always showing us characters
- What we read in email, txt messages, web pages, etc. are characters

- Hence it is a common type of data

• We (generally) store a single character in a single byte

• A character is merely a number stored in a byte

 27

The Villages Amateur Radio Club (of 64)May 16, 2019

Character data (2 of 3)

• ASCII is a industry standard (circa early 60’s) for characters
- ASCII = American Standard Character Information Interchange

- A mapping (aka “encoding”) of characters to numbers

• There is an extension beyond ASCII called “unicode”
- Uses more than one byte per character, but still a character to

number mapping/encoding

- Allows for many more characters, say all the Kanji characters

- Widely used today, but no further discussion in this lecture

 28

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

The Villages Amateur Radio Club (of 64)May 16, 2019

Character data (3 of 3)

• Consider two examples

• The lower-case letter “u” character in ASCII
- “u” = 117 = 1110101 =

• The slash “/” character in ASCII
- “/” = 47 = 101111 =

• Note: base-2 representation of the number (aka “character”)

 29

0 11 01 11 0

0 00 11 11 1

The Villages Amateur Radio Club (of 64)May 16, 2019

The ASCII codes (only for completeness)

 30

0 nul 1 soh 2 stx 3 etx 4 eot 5 enq 6 ack 7 bel
8 bs 9 ht 10 nl 11 vt 12 np 13 cr 14 so 15 si
16 dle 17 dc1 18 dc2 19 dc3 20 dc4 21 nak 22 syn 23 etb
24 can 25 em 26 sub 27 esc 28 fs 29 gs 30 rs 31 us
32 space 33 ! 34 “ 35 # 36 $ 37 % 38 & 39 ‘
40 (41) 42 * 43 + 44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _
96 ` 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del

The blue characters are non-printable.

The Villages Amateur Radio Club (of 64)May 16, 2019

Number data (1 of 3)

• We represent the integers (natural numbers if you prefer) in
a word of contiguous bytes

• A 4-byte word has 32 bits so the largest possible integer is
- 232 - 1 = 4,294,967,295

• An 8-byte word has 64 bits so we can represent
- 264 - 1 = 18,446,744,073,709,551,615

 31

The Villages Amateur Radio Club (of 64)May 16, 2019

Number data (2 of 3)

• But what about negative numbers?

• We allocate 1 bit, the Most Significant Bit (MSB), of the
word to be the “sign” bit
- Reduces the largest representable number by a factor of 2

• Example
- +1234 =

- −1234 =

 32

0 0 0 00000 00000000 0 0 0 0 0 00 0 0 01 1 1 1 10

0 0 0 00000 00000000 0 0 0 0 0 00 0 0 01 1 1 1 11

The Villages Amateur Radio Club (of 64)May 16, 2019

Number data (3 of 3)

• There is a possible complexity with integer arithmetic

• The value of a number can “overflow”
- The desired number is greater than the largest representable number

- Consider, for 32-bit integers, the multiplication (2,147,483,647) × (8)
which produces a number >232

• The processor’s logic handles this and signals an error
- Well written software will alert the user to such an error

 33

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

The Villages Amateur Radio Club (of 64)May 16, 2019

More general numbers

• The integers can not deal with numbers such as 283453.7,
1.0001 or 3.14159265358979323846
- These are referred to as floating-point numbers

- Mathematically, they include the rationals and irrationals

• Need a more complex representation than for integers

• Owing to the complexity we will only cover this briefly
- Well okay, we will use five slides to cover it

 34

The Villages Amateur Radio Club (of 64)May 16, 2019

Floating-point numbers (1 of 5)

• We first note that any floating-point number can be
represented in the canonical format
- ± x.y ×10(±z)

• We refer to this as “scientific notation”

• Examples
- 12.0 = 1.2×101

- -456665345252.23 = -4.5666534525223×1011

- 0.0998299 = 9.98299×10-2

 35

The Villages Amateur Radio Club (of 64)May 16, 2019

Floating-point numbers (2 of 5)

• In the canonical form for floating-point numbers we need to
represent five things in the finite number of bits in a word,
either 32-bit or 64-bit
- Base (2 by definition so no need to be represented)

- Exponent

- Exponent sign (we use a “shift” rather than an explicit sign)

- Mantissa (also called the “fraction” or “significand”)

- Sign

 36

The Villages Amateur Radio Club (of 64)May 16, 2019

Floating-point numbers (3 of 5)

• A standard is used throughout the computer industry
- Formally the “IEEE 754” standard

• The bit-level layout for a 32-bit floating-point word

• The exponent and mantissa are represented in base-2

 37

Sign
1 bit

Exponent
8 bits

Mantissa
23 bits

⎬ ⎫⎭⎬ ⎫⎭

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

The Villages Amateur Radio Club (of 64)May 16, 2019

Floating-point numbers (4 of 5)

• Since we use base-2 for the representations, bits and
binary logic are perfect tools for floating-point arithmetic

• The processor’s logic handles all the usual arithmetic
operations (+ − × ÷) and exceptions like overflow, etc.

• Floating-point logic is more extensive than for integers
- However it is very modest relative to the overall logic of the processor

 38

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

The Villages Amateur Radio Club (of 64)May 16, 2019

Floating-point numbers (5 of 5)

• What exactly can we represent with the IEEE 754 floating-
point numbers

 39

precision in
decimal digits smallest number largest number

32-bit word ~8 1.17549×10-38 3.40282×10+38

64-bit word ~16 2.22507×10-308 1.79769×10+308

The Villages Amateur Radio Club (of 64)May 16, 2019

When 1 does not look like 1…

• Recall that a 32-bit integer 1 is
- 00000000000000000000000000000001

• 1.0 as a 32-bit IEEE-754 floating-point number is
- 00111111100000000000000000000000

• The ASCII character “1” is
- 110001

• Strange? How does the processor know which to use?

 40

The Villages Amateur Radio Club (of 64)May 16, 2019

Important understanding about data

• The computer’s internal data representations are designed
for binary logic efficiency, compactness, and speed

• The software we use presents the data externally in human-
readable forms

• One of the pleasant, user-friendly things about our digital
devices

 41

The Villages Amateur Radio Club (of 64)May 16, 2019

Moving on…

• We now know about data “containers”, base-2, and the
common data types

• Now shift our focus to how we tell the processor what to do
- This topic is more complex than the preceding material

 42

The Villages Amateur Radio Club (of 64)May 16, 2019

Instructions

• We tell computers, specifically the processor, what to do for
us by giving it instructions
- Also called “code” or “machine instructions”

• Programs, apps if you prefer, are written in high-level
programming languages† and then compiled in to machine-
level instructions

 43

† For example: Fortran, C, Java, Cobol, Python, SQL, Ruby, etc.

The Villages Amateur Radio Club (of 64)May 16, 2019

Instructions, cont’d

• A processor instruction generally causes one simple thing,
and one simple thing only, to occur

• Owing to this there is a large expansion from programming
language statements to machine-level instructions

• An application may have (many) millions of machine
instructions

 44

The Villages Amateur Radio Club (of 64)May 16, 2019

Instruction data

• This slide’s title is not a contradiction

• Instructions are merely bits stored in words

• The words containing our data are not fundamentally
different than the words containing the instructions
- Both are a set of bytes, containing bits, addressable in the memory

• At this point you may say, “Huh?”
- As you should, but patience please

 45

The Villages Amateur Radio Club (of 64)May 16, 2019

Instruction execution

• An instruction is presented to the processor’s core

• The core’s logic determines the action(s) it needs to
perform based on the bits (i.e., format) of the instruction

• Multiple instructions may complete in a single processor
“cycle”
- Think of the processor cycle as a heartbeat or metronome

- More specifics to follow

 46

The Villages Amateur Radio Club (of 64)May 16, 2019

Instruction types

• Processor instruction formats are very complex

• Even for a specific processor different instruction types
have different formats

• For simplicity of exposition we consider a generic (i.e.,
“made up”) instruction format which is not from Intel, ARM,
IBM, MIPS, or SPARC

 47

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

The Villages Amateur Radio Club (of 64)May 16, 2019

An instruction deconstructed

• Instructions have several “fields” that specify
- the operation itself

- the operand(s)

- variations on the instruction’s behavior

- conditions for execution, or not

- etc.

 48

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

The Villages Amateur Radio Club (of 64)May 16, 2019

Instruction format (made up)

• The word containing an instruction is merely a set of 32 bits

• The processor’s instruction logic decodes the instruction’s
bits and “does the right thing”

 49

prefix or
condition

bits

opcode
bits

operand1
register
number

mode
bits

operand2
register
number

destination
register
number

shift
bits

The Villages Amateur Radio Club (of 64)May 16, 2019

Instruction statistics

• ARM and Intel together dominate the processor market

• ARM and Intel each have several hundred instructions
- Many of these instructions have multiple variations

• Examining the instructions executed by most applications
- Only a small set of the possible instructions are executed most of the

time

 50

The Villages Amateur Radio Club (of 64)May 16, 2019

von Neuman architecture

• Essentially every computer ever made has what is called a
“von Neumann” architecture
- Named after the World War II era mathematician and polymath John

von Neumann

• The key defining characteristics are:
- A central processing unit for arithmetic and logic (aka the “core”)

- Data and instructions co-exist in memory

- Storage external to the processor

- Input/output capabilities
 51

⟵ Our immediate focus

The Villages Amateur Radio Club (of 64)May 16, 2019

A final puzzle piece

• How do we differentiate between data words and instruction
words?
- They coexist in memory owing to the von Neumann architecture

- Picking an arbitrary word in memory, in isolation, it is generally not
possible to know if it is data or an instruction

• The key is the “page” which we learned about earlier
- Reminder: bits ⇒ bytes ⇒ words ⇒ pages

 52

The Villages Amateur Radio Club (of 64)May 16, 2019

Types of pages

• The computer’s operating system understands, at least, two
different types of pages

• For historical reasons the common terminology is
- “text” pages containing only instructions

- “data” pages containing only data

• The operating system and hardware knows whether to treat
the page’s words as instructions or as data
- Complicated but it (obviously) does the right thing

 53

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

The Villages Amateur Radio Club (of 64)May 16, 2019

Instructions vs. data

• The logic of the processor routes instructions from “text”
pages to the I-cache (Instruction cache)
- From the I-cache instructions go to the core’s functional units
‣ Adder, multiply, compare, memory management, etc.

• The logic of the processor routes data from the “data”
pages to the D-cache (Data cache) and also to registers
- Instructions which operate on data require the data to be in registers
‣ Almost always

 54

Disclaimer: There is more complexity
 to this topic than what is
 presented on this slide.

The Villages Amateur Radio Club (of 64)May 16, 2019

Big picture side-bar

• An “app” is a collection of instructions and data

• An app is loaded from storage to memory by the operating
system
- Instructions and data are separated onto the appropriate page type

• The app’s instructions, and data, are “requested”, as
needed, by
- The core’s logic

- The instructions

 55

The Villages Amateur Radio Club (of 64)May 16, 2019

Moving on…

• We have covered all the planned technical material

• Let’s do some “show and tell” to make tangible sense of
processors and data
- [Pass around a few computer components]

• The next few slides have some numbers that may seem
hyperbolic to you
- They are not exaggerated

 56

The Villages Amateur Radio Club (of 64)May 16, 2019

Semiconductors

• The major functional components of computers are
semiconductor die

• Dies are small pieces of silicon with binary logic on them

• Semiconductors are a important, fascinating, and
impressive technology

 57

The Villages Amateur Radio Club (of 64)May 16, 2019

How small is small?

• Finest semiconductor “pitch” today is ~10 nanometers
- Pitch is the distance between two parallel conducting paths

- Full disclosure: the industry is not consistent in defining pitch

• Human hair is 0.00066 to 0.0071 inches (17,000 to 180,000
nanometers) in diameter

• There can be 1,700 to 18,000 parallel semiconductor
conducting paths across the width of a single human hair

 58

The Villages Amateur Radio Club (of 64)May 16, 2019

How many is many?

• Apple’s A11 ARM SoC
- iPhone 8 and X

- 10 nm pitch

- 2.39 GHz

- 87.6 mm2 die
‣ Approximately half the size

of a postage stamp

- 4.3 billion transistors

 59

Energy-efficient
cores

High-performance
cores

Graphics
processors

~0.32 inch

~0.42 inch

The Villages Amateur Radio Club (of 64)May 16, 2019

How fast is fast?

• Humans can barely distinguish 0.10 of a second

• The processor we showed on the previous slide can
execute 2.4 billion instructions per second†

- Thus it takes 0.000000000416 seconds (0.4 nanoseconds) to
execute an instruction

• In practice, processors only execute productive instructions
at a fraction of this rate

 60

† Actually more than this but this is a story for another day

The Villages Amateur Radio Club (of 64)May 16, 2019

How many bits?

• Let’s consider a new high-end iPhone
- It could have as much as 512 Gbytes of storage

• Hence, inside this iPhone there may be as many as
- 4,398,046,511,104 bits

• In words; more than 4 trillion bits in a phone!
- Even a lower-end version will have ~1 trillion bits

 61

The Villages Amateur Radio Club (of 64)May 16, 2019

How much (or little) power?

• A processor in a datacenter server produces ~100 Watt
- Silicon die less than 1 inch by 1 inch and ~0.01 inch thick

- Sophisticated cooling is necessary (see later photos)

• A processor in a smartphone produces ~1 Watt
- The variance of the power is large (very activity dependent)

- Power usage is bursty

- Generally low duty cycle

- Processor switches to lower power core(s) when possible

 62

The Villages Amateur Radio Club (of 64)May 16, 2019

Snapshot of processor/computer operation

• At any given instant in time your computer, smart phone,
tablet, etc. has billions of bits under its control

• Many of these bits are simultaneously moving within the
processor and computer at approximately 110,000 miles per
second
- Common misunderstanding is that they move at the speed of light

(186,282 miles per second); they don’t
‣ For specifics, ask 1on1 after the lecture

- Recall that “bits”, as a physical thing, don’t actually move

 63

The Villages Amateur Radio Club (of 64)May 16, 2019

A brief recap

• Bits are electronic 1s or 0s

• Bits ⇒ bytes ⇒ words ⇒ pages

• Bytes and words hold our data and computer instructions

• Not many types of data are in common use

• Processors execute instructions amazingly fast

• Computer storage can hold huge amounts of data

• Many complexities we did not discuss
 64

The Villages Amateur Radio Club (of 64)May 16, 2019 65

Questions?

The Villages Amateur Radio Club (of 64)May 16, 2019

25” iMac motherboard, circa 2011

 66

Memory
(on back-side
of the board)

Processor
Radiator

Graphics
processor
radiator

Processor

Graphics
processor

Heat pipes

The Villages Amateur Radio Club (of 64)May 16, 2019

25” iMac processor, circa 2011

 67

Processor
with heat-sink

cap

The Villages Amateur Radio Club (of 64)May 16, 2019

25” iMac processor, circa 2011

 68

Processor chip-carrier
back side pin array

(~1500 pins)

The Villages Amateur Radio Club (of 64)May 16, 2019

MacBook Air, motherboard, front, circa 2011

 69

Processor

Platform
controller

Area for SSD
(See next slide)

The Villages Amateur Radio Club (of 64)May 16, 2019

MacBook Air, SSD, circa 2011

 70

SSD
NAND Flash

The Villages Amateur Radio Club (of 64)May 16, 2019

MacBook Air, motherboard, back, circa 2011

 71

Memory
DRAM

The Villages Amateur Radio Club (of 64)May 16, 2019

iPhone SE, circa 2016

 72

Processor

Battery

The Villages Amateur Radio Club (of 64)May 16, 2019

Classic HDD, 1 Tbyte, circa 2015

 73

Read head

Actuator
arm

Platter
(spinning at

5000 to 7000 RPM)

