HF Balloon Antenna Radio on the Square Antenna Prototyping

Need better Antennas for ROS

- Radio on the Square (ROS) has experienced low signal strength and poor signal reports
- Better performing antenna(s) are needed that can be setup on the town square
- Supports are limited to a few trees and lamp posts
- Tiedowns are limited by concrete and trip hazard concerns
- Counterpoise limited to flowers beds at band stand, everything is concrete and bricks

Operations

- ROS mainly a 40M and 20M operation
, ROS is a SSB \& CW event (desire to add PSK)
, ROS will be using a Band Plan to help QRM
- 200 KHz between SSB \& CW address QRM
- CW \& PSK too close on 20M \& 40M...
- Solution CW \& PSK not in same band at same time

11/26/2011 | 16th Annual Radio-on-the-Square
Nov 26-Nov 27, 1400Z-2000Z, K4VRC, The Villages, FL. The Villages Amateur Radio Club. SSB 14.266 \& 7.255, CW 7.033 \& 14.066, PSK-31 14.072 \& 7.036. QSL and Certificates requests email info@k4vrc.org or Dennis Hardoin, 602 Lacy PI., The Villages, FL 32162. The TVARC Radio-on-the-Square (ROS) is held on the Sumter Landing town square in The Villages, Florida held every year on the Saturday \& Sunday after Thanksgiving. This is a great public education event about HAM radio. We send Radio Grams to family members around the world and sign up a dozen students for our January Technician Class every year. www.k4vrc.org

Antenna Requirements

- Best DX performance is objective - Maximum radiation at 0 to 15 Degrees Elevation
- Bands are not used at the same time CW \& PSK antennas can be swapped
- Antennas can be tuned to Tx Frequency
- Single band solutions for 40M and 20M
- Allows optimum performance without compromises

Operating Stations

- Two SSB RIGS
- 14.266 MHz Balloon Antenna \#1
- 7.255 MHz Cushcraft R7 Antenna
- CW RIG
- Primary 7.033 MHz Balloon Antenna \#2
- Secondary 14.066 MHz Balloon Antenna \#3
- PSK RIG
- Primary 14.072 MHz Balloon Antenna \#3
- Secondary 7.036 MHz Balloon Antenna \#2
- VHF/UHF RIG(s)
- Not addressed in this report

Antenna Requirements

- Club owns Cushcraft R7 Antenna (7.255 MHz)
- Need to build three tuned antennas for ROS
- Antenna \#1 tuned to 14.266 MHz
- Antenna \#2 tuned to 7.035 MHz
- Antenna \#3 tuned to 14.069 MHz

Design Approach

- What Dennis was thinking

Design Approach

- What Brad was thinking

Design Approach

- Obtain best radiation in 0 to 15 Degrees elevation for greatest range / hops.
- Best Antennas for 0-15 Degree vs dB Radiated

1. Vertical Dipole
2. $5 / 8$ Monopole
3. 3/4 Monopole
4. $1 / 4$ Monopole

Design Approach

- Res Freq Ant with perfect Ground Plane

Design Approach

- 40M Natural Selection always dominates
- CON-50 Ft Mast for 40M Dipole too tall (34 ft + Clearance)
-CON-5/8 WL Monopole 40M requires Match* at Base
- PRO-3/4 WL Monopole 40M 3nd Best Pattern (100 Ft)
- PRO-55 Ohm good match to 50 Ohm RG-58
- PRO-No mast required

Design Approach

- 20M Natural Selection always dominates
- PRO-Vertical Dipole is \#1 for pattern
- PRO-No ground plane
- PRO-72 Ohm good match to 75 Ohm RG-59
- PRO \& CON- 25 Ft Mast practical (16 FT + Clearance)

Design Approach

- 3/4 WL Vertical 40M Wire (7.035 MHz) into a 99.8 Ft Vertical nominal 55 Ohms assume ground rod at gazebo
- Vertical 20M Dipole (14.069) with on 16.6 Ft Pole and 16.6 Ft via Balloon nominal 72 Ohms
- Only 40M using gazebo ground minimizes ground loops, coupling \& RFI between RIGs

Test Plan

- Select Wire, Balloons and Helium
- Select insulator \& leader
, Balloon lift tests with real wire
, Balloon lift vs. time tests need ~ 8 Hours
- Several overnight fatigue test of balloon, wire and insulator (try normal and windy)
- Test 3/4 WL vs. reference dipole on 40M

Experiments

- Lab work is never done!
- Was it 2 parts blue or red?
- Was that my Ice Tea?

Wire

- Wire needs low Ohms vs. weight
- Must fly to work
- Lowest weight is more important
- Allowed 0.5 dB loss to resistance ~ 5 Ohms
- \#28 AWG $=6$ Ohm/ 100 Ft
- \#28 AWG X 100 Ft ~ 0.768 Oz
- 1 Cu Ft Helium will lift ~ 1 Oz
- Helium sold in 15 CuFt (\$20)

Balloons

- Helium balloons come in many sizes, shapes \& materials
- Latex balloons are locally available normally used for advertizing
- Local retail $=9,11,12$ Inch balloons
- Selected 12 Inch Latex ~ 0.4 Cu Ft

Lift Tests

- Prepared 33 Ft \& 100 Ft coils of \#28 AWG - Estimated two 12 Inch Balloons for 100 Ft of wire lift (1 Balloon should lift 33 Ft)

Lift Tests

- Determined a 9 Inch Balloon = 33 Ft \#28 AWG
- 6 Inch did not lift 33 Ft coil
- Measured size as diameter

Lift Tests

- Three 12 Inch balloons $=100 \mathrm{Ft}$ coil lift with margin
- Line is tight and secure by weight
- 12 Inch balloon = 12×19 Inches

Lift Tests

- Latex balloons lift for less than 12 hours
- Lift is $2 / 3$ original capacity after 8 Hours
- Lift is $1 / 10$ original capacity after 24 Hours
- Decided to exceed equilibrium by 50\%

Insulator \& Messenger

- Messenger vs. weight
- Must fly to work
- \#28 AWG Copper tensile strength ~ 22 LBS
- ~ 2 Oz load on 22 LB line
- 800:1 Safety Factor (messenger not required)
- 12 Inch dental floss leader for fatigue (twisting)
- Insulator
- 30 LB Monofilament X 5 Ft
- Measured greater than 10 Meg-Ohms
- Measured less than 1 Micro-Amp at 200 VDC*

Ready for Testing!

Test Setup Physical

- Three 12 Inch Balloons via Dental Floss
- 5 Ft \#30 Monofilament Insulator
- Antenna 95 Ft \#28 AWG Copper Wire
- Antenna fed directly from tuner
- Tuner Ground to Station Ground Rod via 8 Ft of \#4 AWG Copper
- 2 Ft RG-213 to Transceiver
- No Radials

Test Setup RF

- Antenna was too long
- Covert flight made retune trim impractical - ~ 6.9 MHz Resonance
- Antenna fed directly from tuner
- ~ 60 Ohms (1.4 swr w/o tuner)
- Match at 7.035 MHz was easy (170 pF)
- Transmit tests used 25 Watts
- Ground Rod
- No Radials

95 Ft \#28 AWG Copper

60 R

Test Procedure

- Tests are by comparison to reference antenna
- Transmit tests used www.reversebeacon.net
- CQ calls are logged to database by stations
- Reports Rx QTH, SNR, Frequency, Time/Date
- Antenna ID by Tx Frequency
- SNR compared for same QTH \& Time Rx for both Ant
- Distance / HOPs compared for same Tx Time
- Received tests used HRD Panadapter
- AGC Off, Preamp Off, 100 dB scale
- Antenna switched during Rx of CW \& PSK DX Stations
- Peak Signals were compared
- QSB Stations not used

Reference Antenna Physical

- 40 M Horizontal Dipole
- 68 Ft in Length
- 13 Ft above ground
- Resonance at 7.020 MHz
- Very similar to ROS antenna

Reference Antenna on the Air

- Not an S9 + 20 dB
- Equal to 22 Ft Flagpole
- 40 M NVIS Dipole with circular Pattern
- QSOs for Feb, Mar \& Apr 2011
- Worked All Continents
- Worked 50 Countries
- Worked 45 States
- Missing Alaska, Hawaii, Nevada, South Dakota \& Wyoming

Test Results

- It works real good!

Subjective Results

- First transmission on Balloon 3/4 WL Vertical

Alain Muno

Rue Haie Collaux, 40 Spontin (YVOIR), NR 5530, Belgium Report: $599 \mathrm{~S} / \mathrm{N}: 13 \mathrm{~dB}$
Locator jo2ølh >> 44.1 4,587.0 Miles

To: KN9B This confirms our 2-way PSK31 QSO Date: March 22, 2011 Time: 00:21 UTC Band: 40M UR Sigs: 599 73 's for this verry good QSO, And i hope to see you again in Digital Modes "SAVE OUR PLANET"

Subjective Results

- Balloon 3/4 WL Vertical superior to Reference
- Pulled hidden signals out of noise floor
- Doubled the number of carriers on Panadapter
- +20 dB Average Rx Gain Increase
- CQ at 25 W got Belgium on first call
- CQ at 5W to adjust SWR got immediate SC RST Rpt
- In the first Hour worked at 25W;

Belgium Ontario Canada
Martinique European Russia
Venezuela Italy

Odessa Ukraine

Objective Res , Sent 270 Cw CQs

- Got 55 Reverse Beacon Hits

- Balloon 3/4 Vert average distance 1699 Miles - 40M NVIS Dipole average distance 732 Miles
- +12 dB Average Tx Gain Increase **
- All logs where increases for $3 / 4$ WL Monopole
- Maximum was 18 dB increase
- Minimum was 8 dB increase

[^0]
Objective Results*

Not all 55 log items shown. * www.reversebeacon.net

Conclusions

- It works real good!
- 12 dB or 20 dB is a gigantic improvement
- CQ results are conservative due to tree snag
- Rx and first Tx tests were 20 dB
- Covert night-time deployment prevent wire from reaching full altitude during measurements

Antenna Height

 Matters!

Why does it work?

- Approaching Wavelength Radiator
- More radiation at angles below 30 Degrees
, Height Gain or Clear Sky Effect
- Fewer obstructions means an increase in radiation at lower angles

Problems

Picture of balloon launch

- Unless you are 007 working at night is a bad idea

Problems

- Safety and Site Plan for Wind Changes
- Wind will take the antenna into trees or worst even power lines
- Wind direction will change during operations

Problems

- RFI from Mis-Match on "perfect match"
- Running directly unbalanced out on tuner
- Measured 0 to 0.4 W Reflected on 25 W Forward
- Still SWR was always 1:1.0
- RFI was noticeable in shack

Problems (maybe not)

- Wind has big influence on antenna angle
- 5-8 MPH resulted in 45 Degree Angle
- 15-18 MPH resulted in 30 Degree Angle
- Mechanical Issue Only
- Experienced both East and West Wind Slopping without change in EU or West Coast RST
- No QSB could be detected
- No RF Issues

40 M Recommendations

- Mast for public issue at ROS not needed at FD
- Mast required for safety (wind vs. people/structures)
- Do not worry about wind drift angle vs. RF
- Do not kink antenna \#28 AWG wire
- 3/4 WL Vertical 40M Wire (7.035 MHz) into a 99.8 Ft Vertical nominal 55 Ohms assume 4 radials (\#22 AWG X 35 Ft) at gazebo
- Use new wire and be careful during reeling
- Length Tune for R + Oj vs. lowest VSWR
- Take any ground with 3/4 WL
- Use true Current BALUN on $3 / 4$ WL (BAL on Ant end)

100 Ft \#28 AWG

- RG-58 OK as 0.5 dB not noticed with +20 dB
- Use Feedline length of 50 Ft or 75 Ft
- Avoid 32 Ft or 64 Ft
- Use Dental Floss to secure balloons with 2 Ft
- Use Five Foot 30\# Monofilament Leader Isolator
- Only 40M using gazebo ground minimizes ground loops, coupling \& RFI between RIGs

20 M Recommendations

- Same as 40M List except;
- Use Vertical Dipole for 20M
- Better Low Angle Radiation than 3/4 WL
- BALUN and/or choke not needed
- Mast needed for Safety \& RF (see next page)
- Feed RG-59 at right angle
- Cut Feedline length to 40 or 58 Ft - Avoid 32, 50 or 64 Ft
- Vertical 20M Dipole (14.069) with on 16.6 Ft
- Vertical 20M Dipole (14.266) with on 16.4 Ft - Pole and 16 Ft via Balloon nominal 72 Ohms
- Only 40M using gazebo ground minimizes ground loops, coupling \& RFI between RIGs

20 M Recommendations

- Mast needed for Safety \& RF
- Keeps people from touching antenna
- Improves RF Gain ($25 \mathrm{Ft}=10 \mathrm{dBi}$)*

20 M Recommendations

- 20M Vertical Dipole featured in April QST
- Fishing poles used for Masts
- 5 Gallon buckets of Sand are only supports

Other Balloon HAMs in the Air

- Field Day using balloons on 160 Meters
- Small balloons are very effective HF antennas

Filling 18 Inch Balloon from $\$ 20$ Helium Tank

Airborne at 200 Feet

SWR 1:1 at 1.825 MHz

Good Information

- Anyone with a remote tuner can try this on 40 M using a $5 / 8 \mathrm{WL}$ (83.1 Ft) should be super
- Mylar (foil) balloons good for 4 days, while latex balloons provide lift for only 10 hours
- Roll you \#28 AWG on an empty 2 -Liter bottle, after tying the coil open the bottle cap and squeeze to shrink the bottle for coil removal
- Wal-Mart has 15 Cu Ft Helium for $\$ 20$
- Do not try a 5 /4 or $7 / 4 \mathrm{WL}$ on 20M the low angle radiation will be lost to upper lobes

[^0]: * www.reversebeacon.net
 ** Conservative due to tree snag

