Vertical Odyssey

The Inverted L/Flagpole

A Low- Observable Antenna

Excerpt from the presentation by
Don Crosby, W1EJM
January 2016

Introduction

Our TVARC January presentation was a time \log of antenna construction and performance at my QTH.
These slides review the Vari-L method to combine 'flagpole' and 'flat-top' to form an Inverted L in a motorized configuration so that the antenna can be tuned to any ham band; 75-10 meters.

Vari-L Benefits:
Low- Observable Antenna
Low Vswr, Legal Limit, No Tuner needed
Inexpensive, readily available component parts
Tools; Dremel Rotary Tool, a Soldering Iron and household tools

Inverted-L's?

- Horizontal and Vertical Polarization
- A favorite of renowned Analyst L. B. Cebik W4RNL (SK)
- Performance similar to a 'low' Dipole
- Configuration:
- Use a Flagpole as the vertical support
- 32 Radials are recommended
- Flat Top wire back to house / tree

Inverted L Antenna

Flagpole Pole and Flattop Wire
Radials buried at grass-root level (32 recommended)
Ztyp ~ 40 ohms for a 1.4:1 VSWR

2 Configurations of Flat Top Lengths

- 75-10 Meters, Variable Length of 0 to $\sim 48^{\prime}$ max.
- 160-10 Meters, Variable Length of ~ 45 to 85^{\prime} max.

Lets see what happens in each case.....

Charting the Bands vs Lengths

In the next slide, the results of NEC-2 modeling show
2 Variable Length regimens are reviewed.

- Below the Red line, 48^{\prime} or less, show lengths for bands $75-10$ meters with 1 to 3 reasonable Vswr values for each band, none higher than 2.4:1
- Above the Red line, 48 ' to 85 ' lengths allows operation on 160 meters with a fixed, relay controlled L / C at the Flagpole base in addition to the same number of low Vswr spots for the 75 - 10 meter operations.

Band vs. Flat Top Wire Length, NEC-2 Prediction

 One wire of proper length could work all HF bands (Except 160)Model Prediction Flat Top Length vs Frequency

The following slide shows 17 Meters

The X axis is length, 0 to 89 feet.

At 18' length
Vswr is $1: 1$
Gain is 6 db
Pattern: North / South

At 73' length
Vswr is $1: 1$
Gain is 7 db
Pattern: East / West

17 Meter Band Modeling Example One Flattop Wire of Variable Length

Proposed Mechanism

Slide Follows:

A Motor Driven Flattop Wire
Clothesline Format, 0-48' or 48-85' Flattop Length
$0-48^{\prime}$, Wire minimum length 2^{\prime}, so retracting the wire would store 44^{\prime} by the Flagpole (22 down, 22 back up), leaving 2-2' sections as Flattop.
$48 '-85$ ', 41' stored by the Flagpole, leaving 44 Flattop minimum to 85^{\prime} maximum.

Think about it, sketch it, get comfortable with the idea.

Vari-L All Band Inverted L Antenna

Clothesline Format Sketch

Vari-L All Band Inverted L Antenna

No-Tuner, Legal Limit Power, Low Visibility

$$
\begin{gathered}
40-10 \text { Meter <1.7:1 VSWR } \\
75 \text { Meters VSWR }=2.4: 1
\end{gathered}
$$

So what about 75 \& 160 Meters?

75 and 160 Meter Band Network

40-10 Bands are Straight Through connection 75 and 160 Meters have only 2 Tap Inductor and 2 Caps
L / C tuned to 3.5 mhz and 1.8 mhz for $\sim 1: 1 \mathrm{VSWR}$
Simply shorten wire to get to $\sim 1: 1$ to operate higher in the band.

Actual Performance

The graph in the following slide shows the actual low Vswr points vs. wire length for the antenna.

It's impressive to compare this graph with the Predicted performance shown in slide 8

Vari - L Flat Top - Actual Performance Data
 1-8-16

Flat Top Length and Vswr vs Frequency

Directionality

Antenna Model on 10 Meters
Az / EL Pattern vs. Length

