

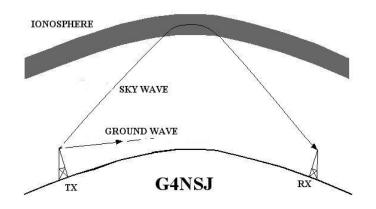
#### Upper Pinellas Amateur Radio Club Tech Program Series

## **An Introduction to HF Propagation**

Steve Foy – N4FOY Paul White – N4WGL



# This presentation is adapted from an article by Dennis J. Lusis, W1LJ, appearing in QST magazine December, 1983.


# Thank you to Paul White, N4WGL, for advice and counsel in creating this presentation.

- Overview of Propagation
- The lonosphere & Layers
- Refraction
- Multi-hop Propagation
- Effects of the Sun
- Propagation Predictions / Further Reference
- Summary / Q&A

- The lonosphere & Layers
- Refraction
- Multi-hop Propagation
- Effects of the Sun
- **Propagation Predictions / Further Reference**
- Summary / Q&A

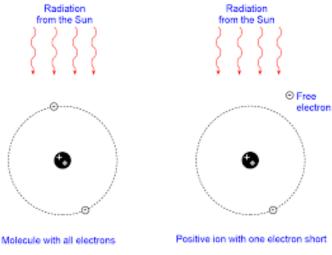
- Propagation: How radio waves travel
- Focus on HF Propagation
- VHF / UHF Propagation is completely different

- Your antenna generates radio waves.
- Two Categories:
  - Ground Waves vs. Sky Waves
    - Ground waves:
      - Station to Station
      - Do not leave the lower atmosphere
    - Sky Waves
      - Do not follow Earth's surface
      - Travel into the sky
      - Reflected by lonosphere
      - Reflected signal can travel
        - many miles



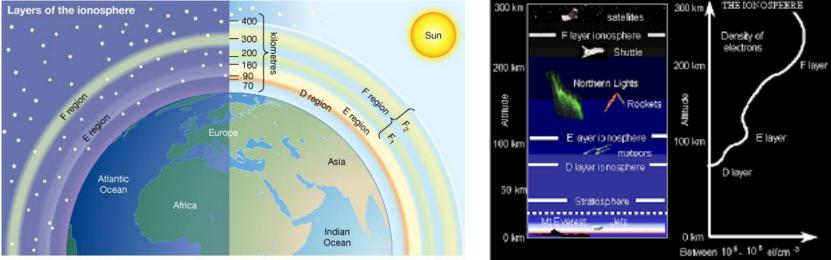
- The lonosphere & Layers
- Refraction
- Multi-hop Propagation
- Effects of the Sun
- **Propagation Predictions / Further Reference**
- Summary / Q&A

#### • 25 to 250 miles above Earth


#### Named for 'lon'

- "Free" electrons
- Caused by ultraviolet heating from the Sun
- Low air pressure (less dense)
- Ions travel freely

#### Ions 'refract' radio waves


- Directed back to Earth
- Solar conditions dictate strength of refraction

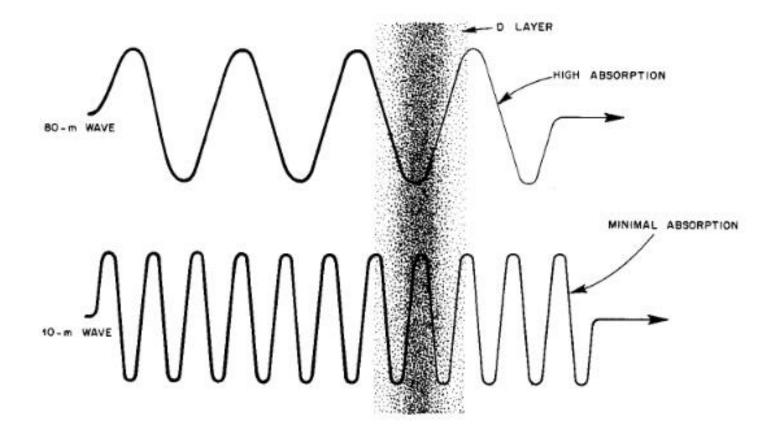




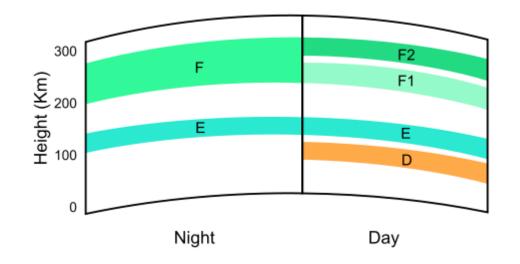
Ionosphere is divided into 'Layers'

- Concentric to Earth's curve
- Center of each Layer is more 'ionized'
- Ionization affected by season, time of day, solar conditions.



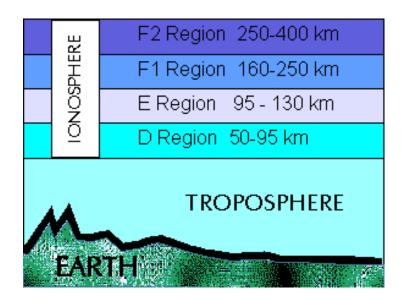

© 2012 Encyclopædia Britannica, Inc.

- Ionosphere Layers:
  - D: 50-95Km
    - Absorbs some radio waves
    - Disappears at night
  - E: 90-140Km
    - Reflects radio waves
  - **F: 160-400Km** 
    - Absorbs most UV radiation
    - Reflects radio
      - waves

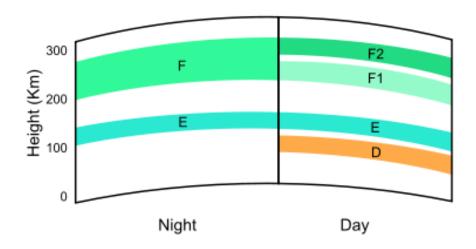

|   | Ionospheric Layers    |  |
|---|-----------------------|--|
|   | F2 Layer 300 -400 Kms |  |
|   | F1 Layer 200 Kms      |  |
|   | E Layer 120 Kms       |  |
| - | D Layer 70 Kms        |  |
|   | Troposphere           |  |
|   | Earth                 |  |

#### The 'D' Layer:

- 37-57 miles above the Earth
- Exists only during daylight
  - Disappears 30 minutes after sunset
- Particularly dense
  - Ions collide and recombine with loss of UV Rays
- This Layer is less useful to Amateurs
  - Radio waves are absorbed as they set lons in motion
  - Lower frequency waves set more lons in motion
    - Energy is absorbed more than higher frequency waves
    - 160, 80, 40 meters produce short distance DX in daytime
  - Low angle waves absorbed more than high angle

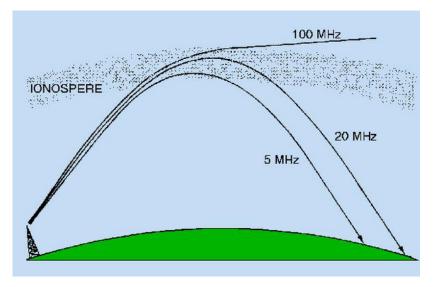



- At night, D layer disappears
- 160, 80, & 40 meters usable for long distance DX
- 20 meters is unaffected by the D Layer
  - "Less absorbed"

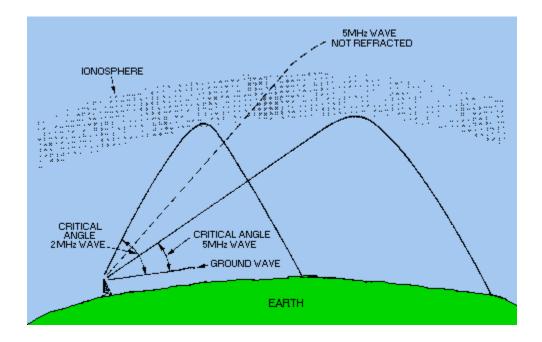



- The 'E' Layer
- 62-71 miles above the Earth
- Supports 'occasional' propagation
- Absorbs low frequency radio waves
  - Not nearly as much as the 'D' Layer
  - Peak ionization is at mid-day
- X-rays and meteors contribute to ionization
- Causes 'Sporadic E'
  - "Clouds" of densely packed lons
  - VHF propagation 10 and 6 meters
  - Subject for a different Tech Program!

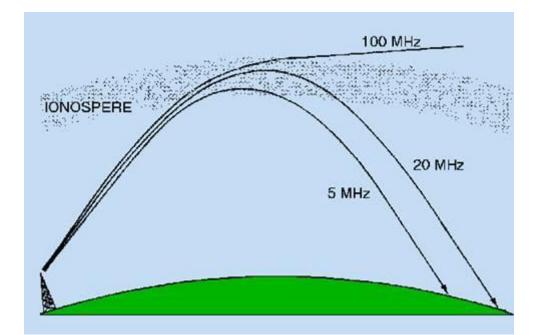
- The 'F' Layer:
  - 100-260 miles above the Earth
  - "Rarification" causes slower ion re-combination
    - Rarification 'less dense'
    - Thus, high ionization
  - Peak ionization mid-day
    - Least ionization just before sunrise
  - Provides best result for long distance HF
  - Divided into two sublayers:
    - F1 Present at daytime, acts like 'E' Layer
    - F2 Highly ionized, is at lower altitude at night



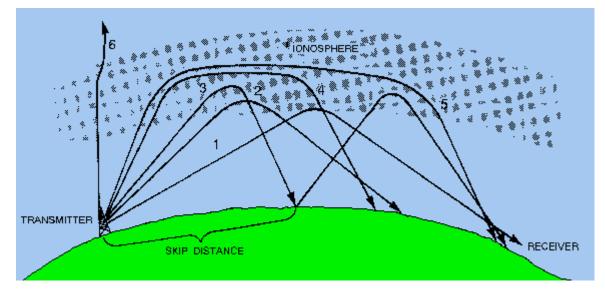

#### F1 and F2 recombine at night




- Overview of Propagation
- The lonosphere & Layers
- Refraction
- Multi-hop Propagation
- Effects of the Sun
- **Propagation Predictions / Further Reference**
- Summary / Q&A


- How the radio waves are 'bent' back to Earth
- Two factors affect refraction:
  - Ionization
  - Frequency
    - Occurs more often on lower frequencies




- Angle entering the F Layer also affects refraction
- "Critical Angle" is highest angle achieving refraction
- Waves at and below "Critical Angle" are refracted



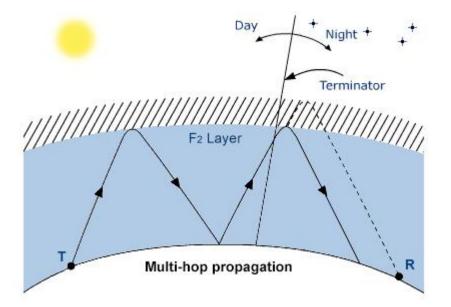
- Maximum Useable Frequency (muf)
  - Highest frequency achieving refraction between two points
  - May be different between any two stations at same time



- Critical Angle also related to 'Skip Distance'
- Also called 'Skip Zone'
- Varies by band

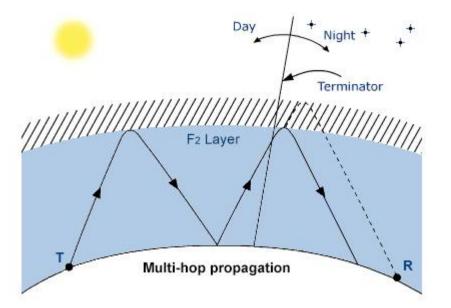


#### Approximate Skip Distances for the Amateur MF and HF Bands


| Band  | Noon*   | Midnight*      |
|-------|---------|----------------|
| 160 m | 0 mi    | 0 mi           |
| 80 m  | 0 mi    | 0 mi           |
| 40 m  | 50 mi   | 300 mi         |
| 30 m  | 300 mi  | 600 mi         |
| 20 m  | 500 mi  | 1000 mi        |
| 15 m  | 800 mi  | (Daytime only) |
| 10 m  | 1200 mi | (Daytime only) |

\*Local time at the midpoint of the path.

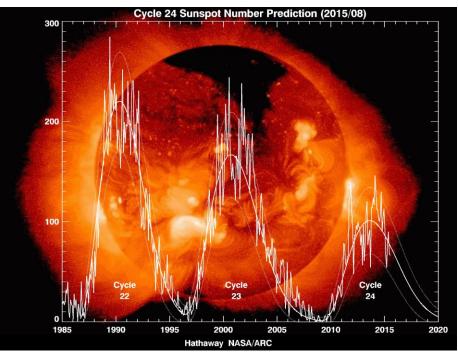
- Overview of Propagation
- The lonosphere & Layers
- Refraction
- Multi-hop Propagation
- Effects of the Sun
- **Propagation Predictions / Further Reference**
- Summary / Q&A


## **Multi-hop Propagation**

- Waves returning to Earth are reflected back again
- Lowest angle produces longest hop
- Can occur several times
- Bodies of water are better reflectors



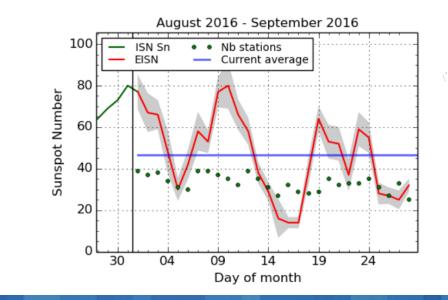
## **Multi-hop Propagation**


- Skip Distance can change from day to night
- Multi-hop effect increases



- Overview of Propagation
- The lonosphere & Layers
- Refraction
- Multi-hop Propagation
- Effects of the Sun
- **Propagation Predictions / Further Reference**
- Summary / Q&A

#### **Effects of the Sun**


- Sunspots and Solar Cycle
  - Increase Ionization improves HF propagation
  - Peak in an 11-year cycle (give or take)
  - Last peak was between 2011 and 2014 (Cycle 24)



## **Effects of the Sun**

#### Sunspot Number

- Also known as 'Wolf' number
- Smoothed' or 'mean' value of Sunspot activity
- Can range from single digits to almost 200
- Higher number = higher ionization = better HF propagation



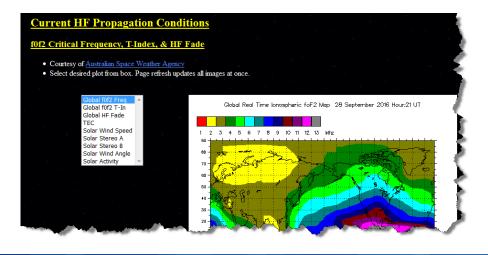
http://sidc.oma.be

## **Effects of the Sun**

#### Solar Flux

- Another indication of ionization
- Ranges from 50 to 300
- Measured by solar 'noise' in the 2800MHz band
- High noise indicates high ionization of 'F' Layer
- Higher Solar Flux number = higher ionization

http://www.solarham.net/




- Overview of Propagation
- The lonosphere & Layers
- Refraction
- Multi-hop Propagation
- Effects of the Sun
- Propagation Predictions / Further Reference
- Summary / Q&A

## **Propagation Predictions**

- More difficult than weather forecasting
- Resources are in QST every month (How's DX?)
- Transmitted by W1AW
- Many Internet resources

http://www.hamqsl.com/solar3.html



#### http://www.hamwaves.com



- Overview of Propagation
- The lonosphere & Layers
- Refraction
- Multi-hop Propagation
- Effects of the Sun
- **Propagation Predictions / Further Reference**
- Summary / Q&A



#### ...And, in conclusion



#### **Questions, Comments -?**



Thank you for listening! Look for more Tech Programs at future meetings! 73, and great DX'ing!

Steve Foy – Member-at-Large, UPARC

N4FOY

Palm Harbor, Florida